Probing Large Extra Dimensions in Collider Experiments

Greg Landsberg

APS 2000 Long Beach Meeting May 1, 2000

http://www-d0.fnal.gov/~gll

Standard Model: Beauty and the Beast

...beauty:

Moriond 2000

MOHOHO 2000			
	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.07	
Γ_{Z} [GeV]	2.4944 ± 0.0024	62	-
$\sigma_{hadr}^{0}\left[nb\right]$	41.544 ± 0.037	1.72	
R_{e}	20.768 ± 0.024	1.19	_
A_fb^0,e	0.01701 ± 0.00095	.70	-
A_e	0.1483 ± 0.0051	.13	•
$A_{ au}$	0.1425 ± 0.0044	-1.16	-
$\sin^2\!\theta_{\rm eff}^{\rm lept}$	0.2321 ± 0.0010	.65	-
m _W [GeV]	80.401 ± 0.048	.15	
R_b	0.21642 ± 0.00073	.85	-
R _c A _{fb}	0.1674 ± 0.0038	-1.27	
$A_{fb}^{0,b}$	0.0988 ± 0.0020	-2.34	_
A_fb^0,c	0.0692 ± 0.0037	-1.29	
A_b	0.911 ± 0.025	95	_
A_c	0.630 ± 0.026	-1.47	_
$\sin^2\! heta_{ m eff}^{ m lept}$	0.23096 ± 0.00026	-1.87	_
$\sin^2 \theta_{W}$	0.2255 ± 0.0021	1.17	
m _W [GeV]	80.448 ± 0.062	.88	_
m _t [GeV]	174.3 ± 5.1	.11	ı
$\Delta \alpha_{\rm had}^{(5)}({\rm m_Z})$	0.02804 ± 0.00065	20	
			-3 -2 -1 0 1 2 3

The Standard Model, based on just three parameters, is extremely successful in calculating dozens of physics quantities to a very high precision

...and the beast:

- Standard Model accommodates, but does not explain:
 - **EWSB**
 - CP-violation
 - **4** Fermion masses
- ♣ In order for the SM to be an ultimate theory to the highest energies an extremely precise fine tuning of the parameters is required

Life in the Bulk Space

- Standard picture of universe: all forces unify at very high energy, 10¹⁶ GeV, and gravity catches up at the Planck mass of 10¹⁹ GeV
- Arkani-Hamed, Dimopoulos, Dvali (ADD) (1998): what if the scale of unification is only ~ 1 TeV?!!

Press Conference, May 1, 2000 Greg Landsberg, Probing Large Extra Dimensions at Colliders

Physics of Large Extra Dimensions

- Bringing unification scale to 1 TeV allows for a very rich physics, possibly filling in the gaps left by the Standard Model
- ♣ First alternative to the "established" post-Standard-Model theories in 25 years! – What took us so long?
- A significant theoretical interest to the subject ensures rapid development of this field
- Close to 300 theoretical papers on this subject over the past two years – truly a topic du jour
- ♣ This new theory, if proved right, could be the most significant discovery of human mind since we managed to realize that the Earth is not flat
- Cf. Edwin Abbot's "Flatland" (1884)

An Importance of Being Compact

- What about Newton's Law?
 - + n=3: F ~ 1/r²
 - + n=3+δ: F ~ 1/r^{2+δ}
- This is only true for "flat" or infinite dimensions!
- If extra dimensions are curled-up, or compactified, with the radius R, the 1/r²+δ law works only for distances r ≪ R
- For $r \gg R$ we still have usual $1/r^2$ law

Compactified dimension

- Compactified dimensions offer a way to increase tremendously gravitational interaction due to a large number of the available "winding" modes
- ♣ This tower of excitations is known as Kaluza-Klein modes, and such gravitons propagating in the compactified extra dimensions are called Kaluza-Klein gravitons, G_{KK}
- The higher the energy is, the more turns a graviton can make, and the stronger gravity becomes

Examples of Compactified Spatial Dimensions

M.C.Escher, Mobius Strip II (1963)

M.C.Escher, Relativity (1953)

Scales, Scales, Scales...

- Particle accelerators (colliders) are the finest microscopes we have ever built
- While tabletop experiments are important tests of Newton's law at short distances, collider experiments are complementary as they are capable of probing gravity at much shorter range

$$\mathbf{R} \propto \begin{cases} 8 \times 10^{12} \mathbf{m}, & \mathbf{n} = 1 \\ 0.7 \, \mathbf{mm}, & \mathbf{n} = 2 \\ 3 \, \mathbf{nm}, & \mathbf{n} = 3 \\ 6 \times 10^{-12} \mathbf{m}, & \mathbf{n} = 4 \end{cases}$$

Modern Collider Experiments

- - ♣ Colliding beams have energy of about 100 GeV each
 - ♣ Four experiments: ALEPH, DELPHI, L3, and OPAL
- ♣ Tevatron: proton-antiproton collider at Fermilab, near Chicago, U.S.
 - Colliding beams are accelerated to nearly 1000 GeV
 - Highest energy man-made accelerator to date
 - ♣ Two experiments: CDF and DØ

Looking for Extra Dimensions at Colliders

Computer simulation of how such an event would've looked like in a collider detector (courtesy M.Spiropulu)

[Detector slice transverse to the colliding beams]

Graviton produced in high-energy collisions could leave our world forever, resulting in an apparent energy non-conservation...

Looking for Extra Dimensions at Colliders

Graviton leaves our world for a short moment, just to reappear again and decay...

Unfortunately, the topology of this event makes it very unlikely candidate in graviton decay. Most likely it is due to well-established physics processes

Recent Results from Colliders

- ↓ LEP2 Collaborations looked at both processes and have not seen any characteristic events due to strong gravity
 - ♣ Current limits on the unification scale from LEP2 is ~1 TeV
- ♣ The DØ experiment at Fermilab has just finished search for pairs of photons and electrons; no events typical of strong gravity have been seen
 - ♣ Current limits from DØ are similar to those from LEP2, although slightly higher
- ♣ Higher energy of the Tevatron, compared to LEP2, allows to increase the sensitivity by a factor of 2-3 in the next Tevatron run, just due to higher number of proton-antiproton collisions that we will collect
- ♣ This puts Tevatron in the unique position of finding extra dimensions in the next few years or significantly constrain the new model
- ♣ Both CDF and DØ are working on search for "monojets" due to graviton emission in the extra dimensions
- ♣ Further generation of colliders (LHC, NLC?) will be able to probe unification scale up to 8-10 TeV, and thus allow for ultimate test of theory of extra dimensions

Black Hole Production at Future Colliders?

- If the energy of the collider exceeds the unification scale, gravity becomes so strong that colliding particles will form a microscopic black hole
- Not to worry: it lives for just a tiny moment and can not possibly interact with matter around it!
- ♣ The best prove is our own existence, since such black holes would be constantly produced by high energy cosmic rays
- These decaying black holes could produce spectacular events in future collider experiments, and we are looking at this possibility in more details
- Black hole production in the lab would be a unique achievement, helping us to solve the ultimate puzzle: origin of the universe and our very existence

Conclusion: WWW Search for Extra Dimensions

http://www.extradimensions.com 🎒 Coming Soon... - Microsoft Internet Explorer File Edit View Favorites Tools Help Search Favorites History ▼ &Go Links Address @ http://www.extradimensions.com/ **Coming Soon!** We recently registered our doma register com for domain name availability: Reduset In Agreement and Inc.

No. 1981 The Property of the Pr

On 2/15/00 patent 6,025,810 was issued to David Strom for a "hyper-light-speed antenna." The concept is deceptively simple: "The present invention takes a transmission of energy, and instead of sending it through normal time and space, it pokes a small hole into another dimension, thus sending the energy through a place which allows transmission of energy to exceed the speed of light." According to the patent, this portal "allows energy from another dimension to accelerate plant growth." - from APS "What's New", 3/17/00

Extra Dimensions TV Show

Stay tuned – next generation of collider experiments has a good chance to solve the mystery of large extra dimensions!